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LE’ITER TO THE EDITOR 

Parisi solutions for the anisotropic spin glass problem 

David Elderfield and David Sherrington 
Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 17 May 1982 

Abstract. A Heisenberg spin glass with local uniaxial anisotropy is studied at  mean field 
level in terms of a Parisi symmetry breaking scheme. It is shown that replica symmetry 
breaking leads to important modifications to the replica symmetric expressions for the 
susceptibilities XT, ,yr which signal the transitions in this system. 

Recently it has been demonstrated (Cragg and Sherrington 1982, Roberts and Bray 
1982) that a vector spin glass with single ion uniaxial anisotropy provides an interesting 
phase diagram and is readily accessible experimentally. In particular the model is 
applicable to spin glass systems in which the host has an HCP structure; for example, 
Zn Mn, Cd Mn (Albrecht et a1 1982). Discussion of the low-temperature spin glass 
phases is, however, complicated by the need to break replica symmetry (de Almeida 
and Thouless 1978, Cragg et a1 1982). Whilst Parisi (1979a, b) has presented a 
generally accepted description for the Ising model, little progress has yet been made 
for vector models. Here we describe a Parisi-like scheme for the O(m) symmetric 
model in the presence of uniaxial anisotropy. Solutions for the mean field equations 
are presented, and some consequences for the longitudinal and transverse suscep- 
tibilities are discussed. 

Td facilitate the construction of a mean field description we follow Sherrington 
and Kirkpatrick (1975) and adopt a Hamiltonian 

i. i i 

which describes the interaction of m-dimensional classical vectors (ISl’ = m) coupled 
via a set of infinite-range exchanges Jii, each of which is an independent random 
variable with probability distribution 

(2) 
The scaling of the variance as N-’ ensures, as usual, a sensible thermodynamic limit. 
The final term in (1) represents a uniaxial anisotropy with the ‘1’ direction an easy 
(hard) axis for D > 0 (D < 0). 

Using the replica trick we obtain the free energy per spin in the thermodynamic 
limit in the form 

(3) 

P(Ji1) = (N/27rJ2)”’ exp( - NJi/2J2). 

f = -T n+O lim n-’ max{F(q”’, p”’, x ” ) }  
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where the free energy functional to be maximised is given by 

Here the superscripts a, p = 1, . . . , IZ are replica labels; the notation (a, p )  relating 
to a sum over distinct pairs. For simplicity units have been chosen such that J = kg = 1. 

The replica symmetric (RS) solution has 
--T x a  = x = ( ( S l ) - l ) / ( m - l ) ,  

q U p  = q =m = 1 - x  - TxT, a l l a , p ; a  # p ,  ( 5 )  

pa' = p  =(s,>2= 1 + ( m  - 1)x - TxL 
- 

where ( ), denote thermal and disorder averages and X T ,  x L  are respectively 
the transverse and longitudinal susceptibilities in the infinitesimal field limit. The RS 
phase diagram has already been discussed (Cragg and Sherrington 1982, Roberts and 
Bray 1982); briefly, one may identify transverse T (4 # 0,  p = 0), longitudinal L 
(4 = 0,  p # 0) and mixed LT (4, p # 0) spin glass phases, whilst the uninteresting 
quadrupolar order parameter x is non-zero throughout the cut DT plane (D f 0), see 
figure 1. 

Unfortunately the RS solution is thermodynamically unstable (de Almeida and 
Thouless 1978, Cragg and Sherrington 1982, Roberts and Bray 1982), so predictions 
based on ( 5 )  for the low-temperature phases (T, L, LT) must be treated with caution; 
although clearly the phase diagram is qualitatively correct. The discovery of this 
instability for the Ising model has led a number of authors (Bray and Moore 1978, 
Blandin et a1 1980, Parisi 1979a, b) to construct solutions with broken RS but, for 
various reasons, only that of Parisi is generally accepted. We have therefore developed 
a Parisi-like scheme for the O(m) ,  D # 0 model which, near the critical point D # 0, 
T = 1 takes the form 

f =  -T  max{m?(r)) ,  {p(r)I, (6) 
where the free energy functional F is given by 

2 2 ~y 1 m3(m - l ) (m -2)y3 
p [ T + + ( m  - 1) - + - 

6 ( m  +2)(m +4)(m +6)  -am ( m  - 1)y 

m(m-l)y) [ jo1dr(rp3(r)+3p(r) j'dwp'(w))] 
0 
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Figure 1. Schematic phase diagram for a vector spin glass with uniaxial anisotropy. The 
hatched area represents that part of the phase diagram for which replica symmetry is 
broken. 

-$(m -1) [I,’ dr((r2+1)q4(r)+4q2(r)  [:dwq’(w) 

. r  . W  

1 1 
2 - 8 m  -2m -2) lo drp4(r)+$(m - l ) (m2-2)  jo drq4(r) 

+-(-) 1 m - 1  [(lo d r ~ ~ ( r ) ) ~ + j ~ d r p ~ ( r ) ]  

+-(-) 4 m + 2  [(lo drq2( r ) ) ’+ l1d rq  0 (r) drp2(r)q2(r) 

-- 2 (-) m + 2  [(I’ drp2(r)) ( jO1 drq2(r))  

1 

4 m + 2  0 

1 m - 1  I m2-1  1 1 

1 m - 1  

and the order parameters 4(r), p(r) are now real functions on the interval (0, 1). We 
have absorbed a factor T-’ into 4, p, x and r = T 2  - 1, y = x +2D/mT. 

Solving (6) and (7), the qualitative structure of the phase diagram near the isotropic 
critical point is confirmed. Predictably, the P-T, P-L phase boundaries are given 
correctly by RS theory. Perhaps surprisingly, we also find that RS breaking does not 
move the embedded boundaries T-LT, L-LT to O(r’, 0‘). 

Let us now discuss explicitly the solutions for 4(r), p(r) for r E (0, 1). Consider 
first D > 0. As r is lowered progressively from high temperatures we find 
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(i) 7 > 7#3); the phase is paramagnetic; 4 = p = 0; 
(ii) 7p(D) > T > 7q(D); the system exhibits longitudinal spin glass ordering; 4 = 0 

whilst p ( r )  is of the form 

(iii) 7q(D) 3 7; the system has entered the mixed phase; 4, p Z 0.. 

&- prpm - 
0 - p ' ( D )  _ - - _ - - - _ _  - 
4 

Q m  

r 'IO1 S q ( D , T )  

where as T approaches ~ ~ ( 0 )  from below p m + p * ,  4,+0, sq+r* .  Observe that p * ,  
r: are independent of 7 and thus effectively constant. 

(iv) 7q(D) >>7; finally the system crosses over to the isotropic solution; p ( r )  = 4 ( 1 ) .  

- I  
P n ' Q n  

S , ( D . T I  

where effects due to the anisotropy are confined to a small domain O(D)  at the origin 
r = 0. For D C 0 the roles of p, 4 are simply reversed, so we shall not discuss this case 
in detail; instead we tabulate the various characteristic parameters p * ,  4*, . . . in table 1. 

The thermodynamic susceptibilities are calculated by applying a small field h and 
using 

xWy = -a*f(h)/ah,ah, (8) 
where f ( h )  is the analogue of (6) in the field. In the limit b + 0 this yields (cf Parisi 
1980a, b, Thouless et a1 1980) 

1 

TXL = 1 + T2 ( (m - 1)x -jo drp(r)), TXT= 1 - T2 ( x  +I' drq(r)). (9) 

By contrast, 

m= T2maxq(r)= T24,, (10) 7 (SI) = T 2  max p ( r )  = T2p,, 

so that the standard linear response formula 
-- 

TXPW = ~ ~ , ~ w ~ - ( ~ p ~ ( ~ w ~  

gives predictions different from (9), indicating a breakdown of the ergodic theorem. 
The difference between the two forms of susceptibility may be interpreted as a measure 
of the irreversibility. 
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Table 1. 

D>O 

lq < 7 < TP p m =  -7/2+(m - 1)DT +O(D2,  r2)= -$(r-rp)+. . . 
9 

rP = -- ( m + 2 ) 2 ( 7 - 7 P )  

l8mDT 
p*=mDT, r * = -  

( m  + 2)’ 

s, = r * + m ( p , , , - p * ) - - - A  18 10 

D <O 

TP < 7 < 7, q m = - r / 2 + D T + 0 ( D 2 ,  T ~ ) ~ - ~ ( I - T ~ ) + .  . . 
6(m + 1) 

r, = -- ( m + 2 ) 2  ( 7 - 4  

DT 
m 6 m ( m  + 1) 

m - 1  ( m  - l ) ( m  +2)’ 
q*=(- )  DT, r* = 

For D > 0, near the isotropic critical point the (Parisi) thermodynamic suscep- 
tibilities may be developed in the form 

T ~ L = l + ( m - l ) T ~ x  

ro 7 > Tp, 

+ o(D’, 7’) T < TP, 
1 (3m + 12) 

2 [ l - (m-1)2DT] [ l - -  4 (m+2)  

TxT = 1 - T~~ 

1O 

so that xT, xL respectively exhibit characteristic cusps at the q, p ordering temperatures. 
Throughout the domain of interest the quadrupolar order parameter x is non-zero 
and given to this order by 
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2 0  y = x  +- 
mT 

= (T) m + 2  DT( 1 + 2m(m -2)DT ) / ( l + T V ) + -  ( m  1 2 2  + 2 )  (4m -Pm)- (m + 2)(m + 4)(m + 6 )  

As one might expect, all the susceptibilities obey an inequality of the form 

x bX(RS). 

However, only for the Ising limit do we observe the extreme flatness seen by Parisi, 

x (Ising, Parisi)=x(Tc)+O(t3), 

where t = 1 - T/Tc is the reduced temperature. 
For completeness, we note finally the results for D < 0 in the RS broken scheme; 

T~~ = 1 + (m - i ) T Z x  

’ ‘p, 

1 3m+12 
[ l - i  (mT?-) (T-‘p)l 

TxT = 1 - T~~ 

1O 
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